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(Received March 20 1971) 

Abstract 
The dispersion energy between multilayer systems is calculated from the energy of the 
electromagnetic field fluctuations, which originate in the interspace and are repeatedly 
reflected or transmitted by all interfaces. The resulting energy terms are summed explicitly 
for the case of a periodic double layer by means of combinatorial analysis. The dispersion 
energy between different layers turns out to be of longer range than that resulting from a 
pairwise integration of d-6 interactions, on account of the large number of additional 
reflection terms. The reflection terms of order I 2 5 even show extremes in their dependence 
on the separation az. However, their generally decreasing weight makes it very unlikely 
that these extremes might also be encountered in the dispersion energy. 

I INTRODUCTION 

Recently, a method was derived, which enables a calculation of the non- 
retarded dispersion energy between macroscopic bodies from their macro- 
scopic reaction fields'*2. The application of this method to the attraction 
between two spheres makes it possible to represent their mutual dispersion 
energy by a Taylor series with respect to the reduced radii. This series can be 
summed exactly by using appropriate upper or lower bounds for the dielectric 
constants i n v o l ~ e d ~ ? ~ .  

Another geometrically simple system in which van der Waals attraction 
plays an important role for cohesion is the multilayer structure. This applies 
to the attraction between different layers of a layer lattice, the attraction 
between different crystallic regions in polymers and the attraction between 
different layers of biological structures. Calculations of van der Waals 
attraction in multilayer systems have recently been reported by Ninham 
and Parsegian4sS. From the Lifshitz theory6v7 they find the attraction between 
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214 D. LANGBEIN 

different layers to be non-additive and of longer range than expected from a 
pairwise integration of d - 6  interactions between the individual molecules. 

Compared to the Lifshitz theory the present procedure is more lucid and 
straightforward. We start by calculating the reaction potential of an infinite 
layer system caused by an external point charge. This potential is described 
in terms of image charges, i .e. by an infinite number of reflection and 
transmission potentials with respect to the different layer boundaries. 
The dispersion energy between two such layer structures, which is the 
integral over the fluctuation fields times the reaction fields of both systems, 
is obtained by summation over all closed sequences of reflections and trans- 
missions, which connect the two interacting partners. We carry out this 
summation explicitly for periodic double layer systems. Owing to the 
increased number of field reflections, the dispersion energy across a single 
layer turns out to be of longer range than that between attracting half- 
spaces. Numerical results are reported. 

The direct correspondence between each term of the final energy expression 
and a discrete sequence of reflections and transmissions enables us to extend 
the present method to include retarded interactions. 

II REACTION POTENTIALS 

The basis of our calculations is the fact that the dispersion energy between 
two macroscopic bodies A and B can be represented in the form' 

where T;fr is the screened field of a dipole i in A at position j outside A .  
If we replace body B by its macroscopic reaction field 

we are left with an integration within body A' ,  

The first sum in (3) contains the direct reaction of body B to a field fluctuation 
at i in A ,  the second term describes the interaction via polarization of positions 
k in A ,  and so on. 
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VAN DER WAALS ATTRACTION IN MULTILAYER STRUCTURES 215 

If body B is a half-space with dielectric constant el (Figure l), we can 
describe its reaction potential due to an external point charge q at position 0 

0 

region 

FIGURE 1 Half-space 

by an image charge q ( E o  - .c1)/(c0 + E ~ )  at position 2a. The total exterior 
potential do (region 0) is 

4 & , - - I  4 
I r l  ~ , + e ~ l r - 2 a l  471&,4, = - + - 

whereas in the interior of the half-space (region 1) we obtain 

(4) 

If instead of a half-space we consider the infinite layer system shown in 
Figure 2, we have to satisfy additional steadiness conditions for at the 
interfacefi2 between regions 1 and 2: we have to add the potential of an 
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216 D. LANGBEIN 

image charge q l ( E 1  - E ~ ) / ( E ~  + E ~ )  at position 2(a + ad, where q , / q  = 

2E,/(&o + 61). 

FIGURE 2 Infinite layer system 

This, in turn, violates the steadiness of 4, at the interfacef,, between 
regions 0 and 1 :  we have to continue the potential of the image charge at 
position 2(a + a,) to region 0 and to add the potential of an image charge 
at  - 2a, in region 1. 

For a construction of the external potential 4, in  general order we note the 
following scheme: 

(a) The steadiness conditions for 4, at the interfacef,,,, require addition 
of its reflection potential with the weight factor ( E ,  - E , + ~ ) / ( E ,  + e n + , )  in 
region n and transmission of 4n with the weight factor ~ E , + ~ / ( E , ,  + E , + , )  to 
region n + 1. 

(b) Reflections and transmissions of the potential of this type are re- 
presented by the diagrams shown in Figure 3, with the respective weight 
given on the right. 

(c) Each contribution to the external potential do corresponds to a closed 
sequence of reflections and transmissions of the unscreened potential at the 
interfaces f, , + 1 .  

(d) We find all contributions to 4, by constructing all paths from the 
diagrams shown in Figure 3, which start and end in the exterior (region 0). 
The weight of these contributions is the product of the weights of the cor- 
responding diagrams. The position of the image charge is the sum over the 
diagram lengths. 
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VAN DER WAALS ATTRACTION IN MULTILAYER STRUCTURES 217 

i ref iexions 

transmissions 

region 

c 

n - 1  

c 

n 

-b 

n + 1  

FIGURE 3 Diagrams 
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VAN DER WAALS ATTRACTION IN MULTILAYER STRUCTURES 219 
This is done explicitly in Figure 4. We find the reaction potential of an 

infinite layer system due to an external point charge q to be 

Eg - E l  1 4EgE1 E l  - E 2  1 

4EgE1 4 E l E 2  E2 - E3 1 

4n~,A4,  = q - e,, + E l  I r - 2a I + ( E g  + E1>2 el  + e2 1 r - 2a - 2a, I 

( E ~  + E,)' ( 8 ,  + e2 I2  E~ + g3  I r - 2a - 2a1 - 2a I + *.. } 
i 
+ 

(6)  

The multilayer shown in Figure 2 reacts to an external point charge like an 
infinite set of independent half-spaces with appropriately adapted dielectric 
constants at distances a +  Zniai, n, integer. 

Ill DISPERSION ENERGY 

In order to calculate the dispersion energy between the two multilayer 
systems A and B shown in Figure 5, we have to calculate the screened external 
field T;;r of dipole i in A and the respective reactions field Si, of body B, and 
to carry out the integration (3) over body A. 

We may construct the screened external potential of a point charge q at i 
in A by successive reflections and transmissions of the direct potential at all 
interfaces-f,,,, of A,  i.e. by a diagram technique equivalent to that introduced 

E-3 

a 4  -3 

-3 

E-2 

- a d  
-2 

- 2  

E- 1 

a -  

-1 

€ 0  

-a - 
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- a  - 
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FIGURE 5 Multilayers A and B 
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220 D. LANGBEIN 

in section 2 .  We obtain the potential of an infinite set of point charges, 
which, in turn, serves as a basis for the construction of the reaction potential 
of B according to (6).  The latter is the sum over the potentials of all successive 
image charges in B. This additive structure is maintained in the two final 
steps of the calculation of the dispersion energy (3 ) .  We have to differentiate 
the reaction potential with respect to the origin ri and with respect to the 
test point rk in order to obtain the reaction field s i k  of B due to dipole i in A ,  
and to carry out the integrations required in (3) .  The dispersion energy AEAE 
between the two multilayers A and B is additively composed of that between 
infinite sets of half-spaces with appropriately adapted dielectric constants at 
separations Zniai, n, integer. 

Having found the analytic structure of A E A B ,  we may reduce the above 
calculations by first assuming A to be a half-space (a-l-+m), and then 
adding the effect of the layers -2, - 3, . . . on account of symmetry arguments. 

If A is a half-space and B is a half-space, we know from previous investi- 
gations1S2 that the dispersion energy per unit surface area is given by 

Eq. (7) is identical with the Lifshitz formula for the non-retarded limit6. The 
summation index I counts the number of field reflections between A and B. 

Since B, rather than being a half-space, is a multilayer reacting with the 
potential given by (6), we have to take into account the full system of point 
charges (6)  each time the field touches B. We obtain in first order of reflection 
( I  = 1) 

and in second order of reflection (I = 2 )  

Each term in (8) corresponds to a path as shown in Figure 4, which is 
closed by a reflection at the surfacef-lo of A .  Each term in (9) corresponds 
to a combination of two paths as shown in Figure 4, which is closed by two 
reflections at the surface f - lo  of A .  
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VAN DER WAALS ATTRACTION IN MULTILAYER STRUCTURES 221 

Since A is not a half-space, but a multilayer too, we now include the 
effect of this multilayer for reasons of symmetry. Whenever the field touches 
A ,  a full set of point charges similar to that given by (6)  must become active. 
We have to replace the reaction potential of half-space A by that of multilayer 
A.  This yields the following diagram technique for AEAR. 

We find all contributions to the dispersion energy between the multilayers 
A and B by drawing all closed paths consisting of diagrams as shown in 
Figure 3, which touch A and Bat least once. The weight of these contributions 
is the product of the weights of the corresponding diagrams. The effective 
separation entering the dispersion energy is one half the sum over the 
diagram lengths. Graphs consisting of I equivalent parts receive the additional 
weight factor lil in order to avoid multiple counting. 

= 
-2 

€,-€-I €,,-El 1 
E,,*E., E,+E, a,, -r -- 

- 1 0  1 2  

FIGURE 6 Contributions to AEAB. two reflections 

This diagram technique is demonstrated explicitly in Figure 6 and 7. We 
wind up with 

The diagram technique described here is consistent with our ideas on the 
origin of van der Waals attraction. We have to calculate the energy change of 
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222 D. LANGBEIN 

- 1  0 I 

FIGURE 7 Contributions to AEAB; four reflections 

the field fluctuations crossing region 0. An electromagnetic wave originating 
in region 0 undergoes reflections and transmissions at  all interfaces 1; i+, , 
where the dielectric properties of the surrounding media change. Each 
return of the wave to region 0 entails a change of its energy. An extension of 
the present method to include retardation is obvious. 

IV PERIODIC DOUBLE LAYERS 

The diagram technique developed in section 3 provides us with the full 
expression for the dispersion energy between arbitrary multilayers. As long 
as we do not require special symmetry, we can merely sum up the resulting 
series numerically. 

A system especially suited to an analytical summation of most contribu- 
tions is the periodic double layer shown in Figure 8. We want to calculate 
the dispersion energy across region 0, and thus consider regions 1, 2, 3, . . . 
to form multilayer B and regions - I ,  -2, -3, . . . to form multilayer A .  
All effective separations in the final expression for AEAB assume the form 
ma, + nu,. It is merely a question of combinatorial analysis to sum up all 
contributions yielding the same separation. With respect to the dielectric 
factors involved, we note from Figures 6 and 7 that only two different 
factors, namely ( E ,  - E ~ ) / ( E ~  + E,) and ~ E ~ E , / ( E ~  + E ~ ) ~  occur, the latter 
being equal to one minus the former. Thus, all dielectric terms entering the 
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dispersion energy can be expressed by the integrals 

€ 2  

-4- 

-4 

€2 

- a r  

-2 

€ 1  

-ai 

-1 

€ 2  

-%- 

0 

€ 2  

- a2- 

2 

€ 2  

-ar 

4 
\ / 

V v- 
multilayer A multilayer B 

FIGURE 8 Periodic double layer 

These are the integrals already involved in the dispersion energy (7) between 
two half-spaces. We expect the final expression for the dispersion energy 
between the multilayers shown in Figure 8 to have the form 

with the coefficients Afmn being conibinatorial numbers. 
We start the analysis of the coefficients A!,,," conveniently with the case 

I = 1, that is with the coefficients of the largest integral 0,. Since each 
reflection yields an additional factor f ( c I  - E ~ ) / ( E ~  + c2) ,  we obtain terms 
contributing to R1 only from the unfolded paths shown in Figure 6. If such 
an unfolded path crosses n layers u2, it may cross n - 1, n or n + 1 layers a , ,  
and may assume n different positions relative to region 0 (see Figure 9). We 
find the total contribution of these paths to be 
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Since no other paths yield contributions to Q,, we conclude 

2 
m - n + l  

Further contributions to the second largest integral R, result only from paths 
containing four reflections, viz. the paths shown in Figure 7. If such a path 
crosses n layers a,, it may cross n-2,  n -  1, n, n + 1 or n + 2  layers a,. We 
distinguish three types: 

(a) All paths, which cross region 0 twice, result from enlarging path I 
in Figure 10 for n-2 diagrams a,  +a, at the intersections 1,  2, 3, 4, Path Ia 
is derived by adding 1, 0, 2, 1 diagrams a ,  +a,  at 1, 2,  3, 4. We can then 
distribute up to four diagrams a ,  to the four ends 1, 2,  3, 4, see for instance 
path Ib. For the total contribution of these paths we find 

4 1 

m = a - 2  

(b) Most paths, which cross region 0 only once, result from enlarging 
paths I1 in Figure 10 for n-3 diagrams a,  +a, at the intersections I ,  2,  3, 4 
(path Ha). Having subsequently distributed up to four diagrams a ,  to the 
four ends 1, 2,  3, 4 (path IIb), we find the total contribution of these paths 
to be 

1 

(c) A third type of paths crosses no region a, twice, see path 111 in Figure 
10. These paths make the contribution 
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228 D. LANGBEIN 

Adding up all terms contributing integrals Q, according to (1 3), (15), (1 6), (1 7) 
we obtain 

All paths contributing to higher order integrals Q1(l 2 3) can be constructed 
by a similar enlarging of basic paths with characteristic positions of the 
reflections. We wind up with 

(19) 

where the coefficients c l l  give the number and weight of basic paths, and 
result recursively from 

Another method of finding the coefficients AImn is by complete induction 
with respect to n. In this case it is convenient first to look for all basic paths 
with respect to the n diagrams a,, and then to distribute the rest of diagrams 
a,  to their different possible positions. The basic paths for n = 1, 2, 3 and 
their weight are shown in Figure 11. Owing to the symmetry of the two 
methods we find 

A l m n  = A m l a  (21) 

V DISCUSSION AND CONCLUSIONS 

We start the discussion of the dispersion energy according to (12) and (19) 
with the limiting cases a, % a2, a, = a,, a1 4 u2. 

a, we are left with the attraction between two half- 
spaces with dielectric constant 8,. We obtain the Lifshitz formula 

(a) In the case a, 
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VAN DER w a s  ATTRACTION IN MULTILAYER STRUCTURES 229 
(b) In the case of layers with equal thickness a, = a,, we can carry out the 

summation over m and n in (12) explicitly. We obtain 

log 2 for 1 = 1 

for 1 = 2 
A l m n  1 3  iylog2 - a) 

’I -.- I ,  :,(m + n), = 

and 

The contribution of the first order reflections 1 = 1 to the dispersion energy 
between multilayers of equal thickness is reduced by a factor of log 2, 
compared to their contribution to the dispersion energy between half-spaces. 
This is due to the repulsive reflections a t  the rear interfacesf,,,,, n = 1, 3, 
5 ,  . . . and n = -2, -4, -6, . . . The contributions of the higher order 
reflections 12 2, on the other hand, are increased by a factor of 1 due to 
their increased number. 

(c) The enhanced importance of the higher order reflections becomes 
even more pronounced in the case a,  4 a,, that is in the case of attraction 
between thin films. Expanding (ma, + nu,)-, in (12) into a Taylor series 
with respect to a,/(a, + a,), we find the largest not mutually cancelling 
terms to result from those paths, which cross no region a, twice, but are 
repeatedly reflected within regions a,. These paths contribute to the terms 
i = 1 in Almn according to (19). Using c,, = I we obtain 

2 l Q ,  
h 3 ! 4  

AEAB = - 16n2 l (3 )  {@, + 4 4  I = 1  

where [(n) is Riemann’s zeta function, ((3) = C l/n3 = 1.202057. 
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230 D. LANGBEIN 

The dispersion energy between films increases quadratic with their thickness 
a,, and is inversely proportional to the fourth power of their separation a2. 
The dielectric factor ZA2, can be summed exactly to give 

Compared to the essential integral R, for the attraction between half-spaces, 
we find the importance of the extremum regions of e l ,  e2 increased consider- 
ably. The integrand in (27) approaches (&&&2)' for el  B &,, while the 
equivalent integrand in R, merely approaches I .  

The increasing importance of the higher order reflection terms with 
decreasing layer thickness a, causes the dispersion energy to be of longer 
range than expected from a pairwise integration of d - 6  interactions. This 
result, which was first reported by Ninham and Parsegian', is in agree- 
ment with the general rule that adsorbate layers dominate the dispersion 
energy between solids a t  separations smaller than the layer thickness2v3. 
The dispersion energy between multilayers is primarily determined by the 
dielectric properties of regions k 1 for a2 < a,, whereas the dielectric 
properties of regions f 2 become important only if a, > a,. 
Computed results on 

for I = 1 ,  2, . . ., 20 are summarized in Figure 12. In addition to the verifica- 
tion of the limiting laws (22), (25) and (26), we find the coefficients I, with 
I 2 5 not to decrease monotonic with al/ (al  + u2), but to assume extremes. 
The position of the minima tends towards a,/(a, + a?) = 1/2, which means 
that (25) is correct in a relatively broad region. The position of the maxima, 
on the other hand, tends towards a,/(a, + a,) = 0. This region is shown 
enlarged in Figure 13. Z, assumes its maximum approximately at a,/(a, + a2) 
= l/Z. From Figs. 12 and 13 it is obvious that the different /,-curves approach 
an envelope, which for a,/(a, + a,) < 0.2 is approximately given by 

envelope { I , }  N 0.75 - a1 + 2 ( 3  + ... 
a1 + (72 a1 + a2 

The monotonic decrease of the dielectric integrals R, with increasing I 
makes it very unlikely that the extremes of the coefficients I, with respect to 
a,  are carried over to the dispersion energy. Representing the latter in the 
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FIGURE 12 Computed coefficients It  
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FIGURE 13 Computed coefficients 1, 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
2
7
 
2
2
 
J
a
n
u
a
r
y
 
2
0
1
1
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form 

we find the behavior of AEAB in the region a, < u2 largely governed by that of 
the envelope (29). In order to demonstrate the increase in range of A E A B  

resulting from the reflection terms 1 2 2, we plotted AEmul~~layer/AEha~f-spaces 
versus u2/ul in Figure 14. For reasons of simplicity, we replaced the monotonic 
decrease of the dielectric integrals R, by an abrupt change from 1 to  0. 

The parameter of the different curves in Figure 14 is the number L, where 
the dielectric integrals are cut off, R, = I for 1 s L, R, = 0 for I > L. The 
case L = 1 corresponds to the behavior resulting from a pairwise integration 
of d d 6  interactions. The increase in the range of attraction with increasing 
L is obvious. The dashed line is the dispersion energy between half-spaces 
(a2/u, = 0). The dotted line in Figure 14 is the result obtained by Ninham 
and Parsegians for the dispersion energy between hydrocarbon-water layers. 
From the fact that this line lies amidst the curves L = 1, . . . , 5 for medium 
separations, but above the curves L = 1, . . . , 5 for large separations, we 
conclude that agreement of both treatments is obtained if instead of abruptly 
cutting off the dielectric integrals we assume a more realistic behavior like 
R 1 -  -  XI-^ with s < 1. Explicit investigations on the dielectric integrals 
R, in different media and on the resulting behavior of the dispersion energy 
in multilayers will be reported in a subsequent paper. 
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